Search results for "Data clustering"
showing 10 items of 27 documents
Clustering categorical data: A stability analysis framework
2011
Clustering to identify inherent structure is an important first step in data exploration. The k-means algorithm is a popular choice, but K-means is not generally appropriate for categorical data. A specific extension of k-means for categorical data is the k-modes algorithm. Both of these partition clustering methods are sensitive to the initialization of prototypes, which creates the difficulty of selecting the best solution for a given problem. In addition, selecting the number of clusters can be an issue. Further, the k-modes method is especially prone to instability when presented with ‘noisy’ data, since the calculation of the mode lacks the smoothing effect inherent in the calculation …
An algorithm for earthquakes clustering based on maximum likelihood
2007
In this paper we propose a clustering technique set up to separate and find out the two main components of seismicity: the background seismicity and the triggered one. We suppose that a seismic catalogue is the realization of a non homogeneous space-time Poisson clustered process, with a different parametrization for the intensity function of the Poisson-type component and of the clustered (triggered) component. The method here proposed assigns each earthquake to the cluster of earthquakes, or to the set of independent events, according to the increment to the likelihood function, computed using the conditional intensity function estimated by maximum likelihood methods and iteratively chang…
Distance-constrained data clustering by combined k-means algorithms and opinion dynamics filters
2014
Data clustering algorithms represent mechanisms for partitioning huge arrays of multidimensional data into groups with small in–group and large out–group distances. Most of the existing algorithms fail when a lower bound for the distance among cluster centroids is specified, while this type of constraint can be of help in obtaining a better clustering. Traditional approaches require that the desired number of clusters are specified a priori, which requires either a subjective decision or global meta–information knowledge that is not easily obtainable. In this paper, an extension of the standard data clustering problem is addressed, including additional constraints on the cluster centroid di…
Fast dendrogram-based OTU clustering using sequence embedding
2014
Biodiversity assessment is an important step in a metagenomic processing pipeline. The biodiversity of a microbial metagenome is often estimated by grouping its 16S rRNA reads into operational taxonomic units or OTUs. These metagenomic datasets are typically large and hence require effective yet accurate computational methods for processing.In this paper, we introduce a new hierarchical clustering method called CRiSPy-Embed which aims to produce high-quality clustering results at a low computational cost. We tackle two computational issues of the current OTU hierarchical clustering approach: (1) the compute-intensive sequence alignment operation for building the distance matrix and (2) the …
Efficient and Accurate OTU Clustering with GPU-Based Sequence Alignment and Dynamic Dendrogram Cutting.
2015
De novo clustering is a popular technique to perform taxonomic profiling of a microbial community by grouping 16S rRNA amplicon reads into operational taxonomic units (OTUs). In this work, we introduce a new dendrogram-based OTU clustering pipeline called CRiSPy. The key idea used in CRiSPy to improve clustering accuracy is the application of an anomaly detection technique to obtain a dynamic distance cutoff instead of using the de facto value of 97 percent sequence similarity as in most existing OTU clustering pipelines. This technique works by detecting an abrupt change in the merging heights of a dendrogram. To produce the output dendrograms, CRiSPy employs the OTU hierarchical clusterin…
Solution Using Clustering Methods
1987
The main aim of this analysis is to find out typical morphologies from the multivariate and longitudinal data set on growing children and to describe the morphological evolution of the found groups of girls. The finding out of typical morphologies is, in our opinion, strictly linked to the search of structures in the individuals and in the variables.
A Greedy Algorithm for Hierarchical Complete Linkage Clustering
2014
We are interested in the greedy method to compute an hierarchical complete linkage clustering. There are two known methods for this problem, one having a running time of \({\mathcal O}(n^3)\) with a space requirement of \({\mathcal O}(n)\) and one having a running time of \({\mathcal O}(n^2 \log n)\) with a space requirement of Θ(n 2), where n is the number of points to be clustered. Both methods are not capable to handle large point sets. In this paper, we give an algorithm with a space requirement of \({\mathcal O}(n)\) which is able to cluster one million points in a day on current commodity hardware.
Structural clustering of millions of molecular graphs
2014
We propose an algorithm for clustering very large molecular graph databases according to scaffolds (i.e., large structural overlaps) that are common between cluster members. Our approach first partitions the original dataset into several smaller datasets using a greedy clustering approach named APreClus based on dynamic seed clustering. APreClus is an online and instance incremental clustering algorithm delaying the final cluster assignment of an instance until one of the so-called pending clusters the instance belongs to has reached significant size and is converted to a fixed cluster. Once a cluster is fixed, APreClus recalculates the cluster centers, which are used as representatives for…
A novel heuristic memetic clustering algorithm
2013
In this paper we introduce a novel clustering algorithm based on the Memetic Algorithm meta-heuristic wherein clusters are iteratively evolved using a novel single operator employing a combination of heuristics. Several heuristics are described and employed for the three types of selections used in the operator. The algorithm was exhaustively tested on three benchmark problems and compared to a classical clustering algorithm (k-Medoids) using the same performance metrics. The results show that our clustering algorithm consistently provides better clustering solutions with less computational effort.
Trajectory-based and Sound-based Medical Data Clustering
2022
Challenges in medicine are often faced as interdisciplinary endeav- ors. In such an interdisciplinary view, sonification of medical data provides an additional sensory dimension to highlight often hard- to-find information and details. Some examples of sonification of medical data include Covid genome mapping [5], auditory repre- sentations of tridimensional objects as the brain [4], enhancement of medical imagery through the use of sound [1]. Here, we focus on kidney filtering-efficiency time-evolution data. We consider the estimated glomerular filtration rate (eGFR), the main indicator of kidney efficiency in diabetic kidney disease patients.1 We propose a technique to sonify the eGFR tra…